Advancing Blast Fragmentation Simulation of RC Slabs: A Graph Neural Network Approach

Qilin Li, Zitong Wang, Wensu Chen, Ling Li, Hong Hao

Introduction

- Blast fragmentation simulation is crucial
 - Predict and mitigate blast effects
 - Terrorist attacks or industrial accidents
- Accurate simulation aid protective design
 - Withstand blast impacts
 - Structural integrity and public safety

Existing Approaches

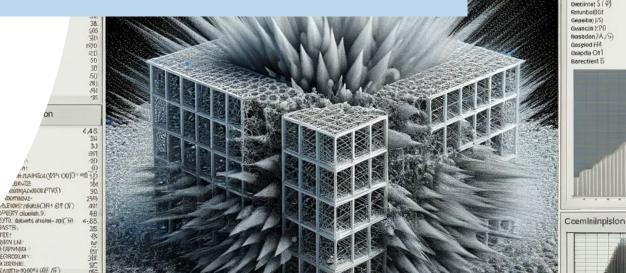
- Experimental testing
 - Expensive
 - Difficult to collect comprehensive data
- Numerical Modelling
 - Computationally intensive
 - Scalability

Existing Approaches

- Experimental testing
 - Expensive
 - Difficult We need a solution that reduce computational load data
- Numerical N
 - Computationary interiore
 - Scalability

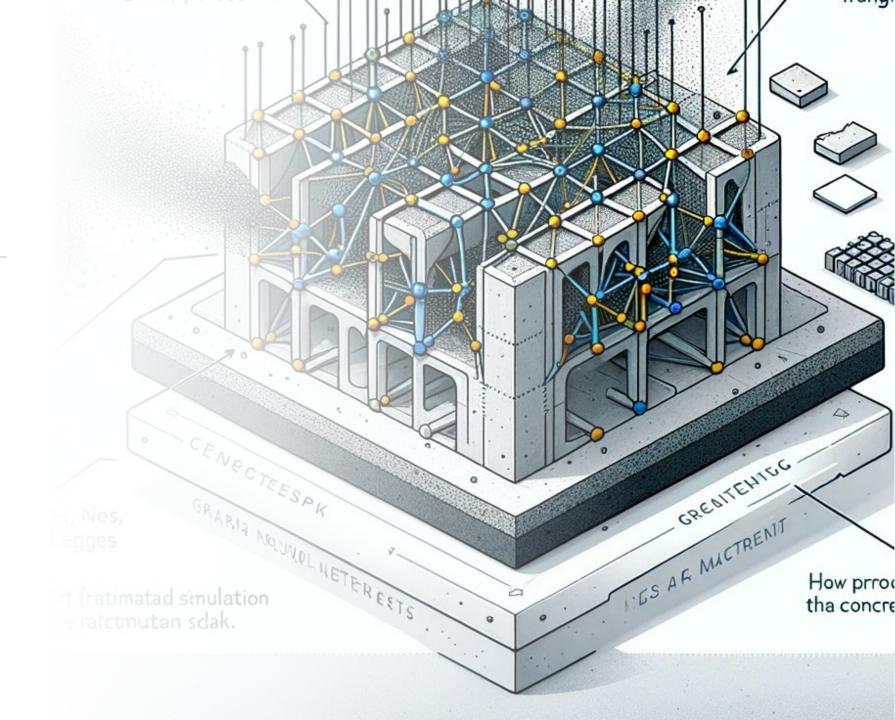
eacion . nemety 0.1

Ox 21

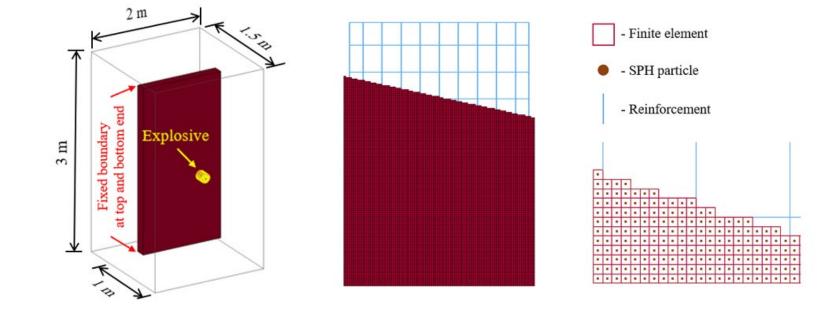


Overview of Graph Neural Networks (GNN)

- Brief explanation of GNN
 - Graph structured data + deep learning
 - Capturing interactions between elements
- Why GNN for this problem?
 - GNN is like FEM
 - Divide and conquer



Numerical modelling



• FEM-SPH-ALE coupling

Table 3 Material properties of concrete [24, 53]

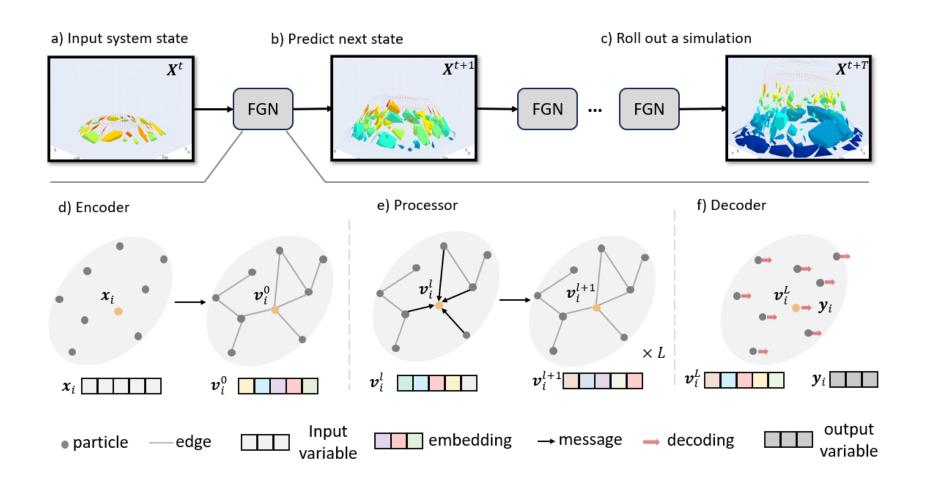
Density (kg/m ³)	Poisson's ratio	Compressive strength (MPa)	Tensile strength (MPa)	A0	A1
2400	0.2	30.7	2.95	10.90125	0.466388
A2	A0Y	A1Y	A2Y	A1F	A2F
0.003641	6.923877	0.730823	0.005082	0.4773	0.003583

Table 4 Material properties of HRB 400 steel reinforcement [24]

Density	Yield stress	Ultimate stress	Poisson's ratio	Young's
(kg/m ³)	(MPa)	(MPa)		modulus
				(MPa)
7,800	400	540	0.3	2×10 ⁵
.,				

Fragment Graph Network (FGN)

Ę



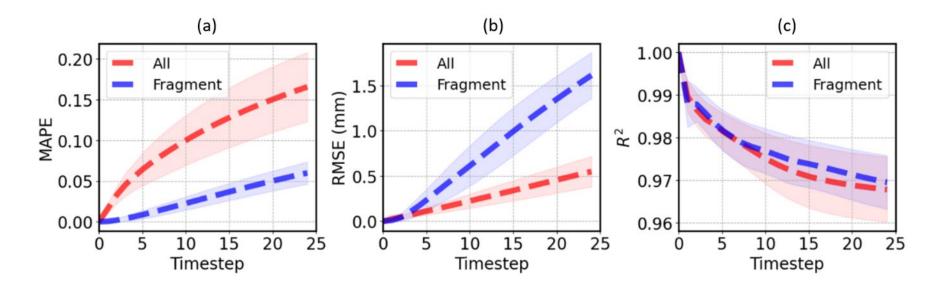
Training details

- 149 cases, each with ~180K particles for 35 steps over 2ms, 9M+ data points in total
- Trained on a NVIDIA TITAN RTX GPU for ~24h

Variable	Data range			
Charge weight (kg)	2, 3, 4, 5, 6			
Standoff distance	200,400,500			
(mm)	300, 400, 500			
Concrete strength	C30, C50, C80			
	1000×2000×60, H $arphi$ 12@100, V $arphi$ 12@200 (one layer)			
Slab size (mm) and reinforcement layout	1000×2000×90, H $arphi$ 12@100, V $arphi$ 12@200 (two layers)			
	1000×2000×120, H $arphi$ 12@100, V $arphi$ 12@200 (two layers with stirrup)			

Overall Quantitative Evaluation

- Averaged over all particles or fragment particles
- Fragments: ~6% relative error, 1.7 mm absolute error, 96%+ R^2



Time and Memory Efficiency

- FGN is several magnitudes faster than LS-DYNA
- And consumes less memory, which makes it more scalable

Number of particles	Runtime (second)			
	LS-DYNA-CPU	FGN-CPU	FGN-GPU	
123K	10,560	74	5	
186K	10,800	116	8	
246K	11,400	146	12	

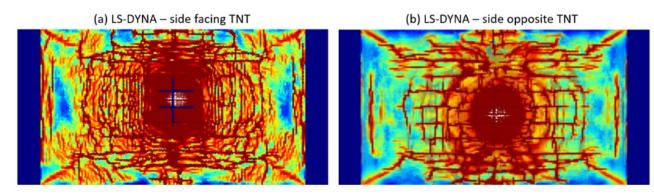
Table 6 Runtime comparison between LS-DYNA and FGN

Table 7 Maximum memory usage comparison between LS-DYNA and FGN

Phase	Memory Usage (GB)			
	LS-DYNA-CPU	FGN-CPU	FGN-GPU	
Training	-	23	24	
Inference	62	16	21	

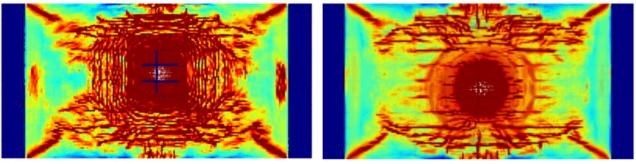
Effective Plastic Strain Prediction

• FGN can predict other parameters, e.g., effective plastic strain



(c) FGN – side facing TNT

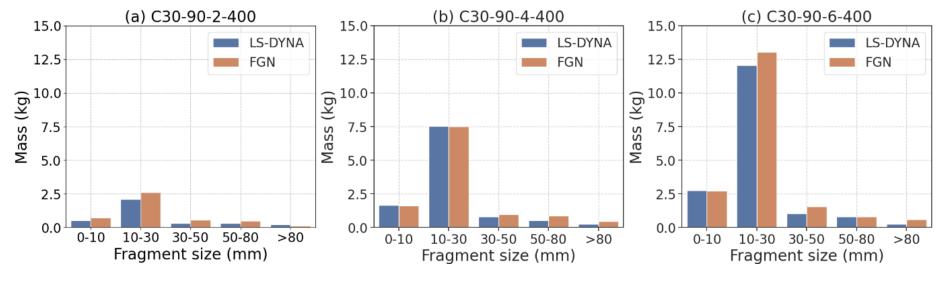
(d) FGN – side opposite TNT



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Effective Plastic Strain

Fragments Mass Distribution

• FGN matches well with LS-DYNA, in terms of fragments distribution

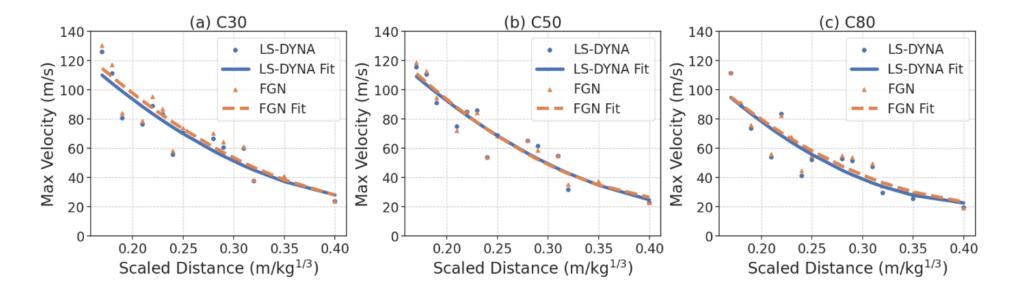


2 kg

⁶ kg

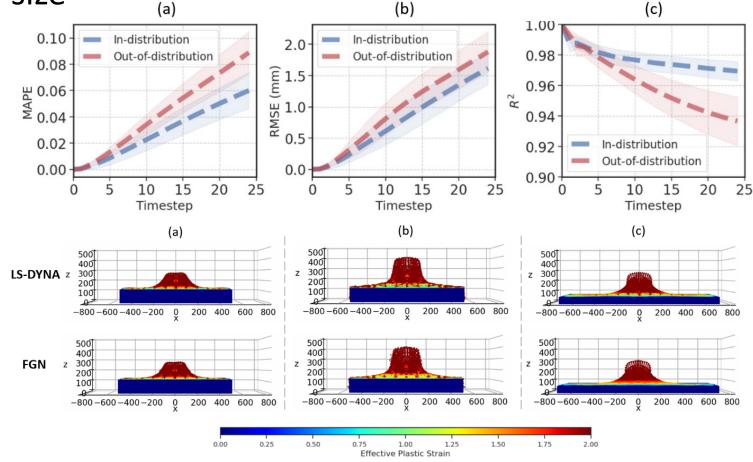
Fragments Max Ejection Speed

- FGN well capture the max ejection speed of fragments
- FGN is well suited for data-hungry parametric analysis



Generalization and Robustness

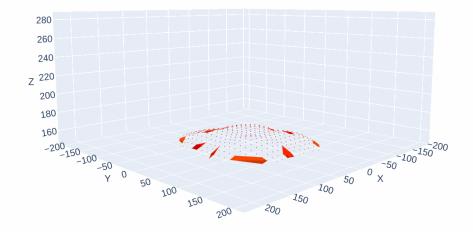
• FGN exhibits good generalizability, e.g., extrapolating scaled distance or slab size (a) (b) (c)



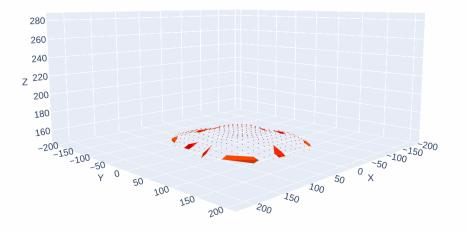
Simulation Animation

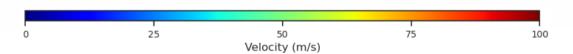
LS-DYNA

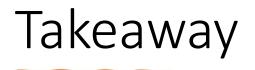
Step: 00, time: 0.600 ms, fragment mass: 0.840 kg



Step: 00, time: 0.600 ms, fragment mass: 0.840 kg







- GNN is well suited for surrogating discretization-based numerical modelling, such as FEM, SPH, or even Eulerian grid
- Paper and code

□ Li, Qilin, Yang Wang, Wensu Chen, Ling Li, and Hong Hao. "Machine learning prediction of BLEVE loading with graph neural networks." *Reliability Engineering & System Safety* 241 (2024): 109639.

https://github.com/qilinli/bleve-graph-net

□ Li, Qilin, Zitong Wang, Ling Li, Hong Hao, Wensu Chen, and Yanda Shao. "Machine learning prediction of structural dynamic responses using graph neural networks." *Computers & Structures* 289 (2023): 107188.

https://github.com/qilinli/gns-fragment

Thank you for your attention! Questions?