
Multi-View Diffusion Process for Spectral
Clustering and Image Retrieval

presented by

Qilin Li
Curtin University

qilin.li@curtin.edu.au

Qilin Li Diffusion process 1 / 48

mailto:qilin.li@curtin.edu.au

Overview

Introduction

Related works

Diffusion process

Applications

DSSC

SRD

ADP

MVD (today)

Qilin Li Diffusion process 2 / 48

Introduction

▶ What is affinity (similarity) learning?

Qilin Li Diffusion process 3 / 48

Introduction (cont.)

▶ Why affinity learning?

Qilin Li Diffusion process 4 / 48

Related works

▶ The Gaussian kernel affinity

Aij = exp

(
−∥xi − xj∥2

σ2

)
(1)

• The bandwidth σ controls how fast the affinity vary based on the
Euclidean distance

• A global σ cannot fit non-uniform data well

Qilin Li Diffusion process 5 / 48

Related works (cont.)

▶ Locally adapted Gaussian kernel affinity

Aij = exp

(
−∥xi − xj∥2

σiσj

)
(2)

• σi adapted to the local structure, e.g., the mean distance to kNN of
xi

Qilin Li Diffusion process 6 / 48

Related works (cont.)

▶ All Gaussian kernels suffer from the “curse of dimensionality”

• As the dimension increases, the available data become sparse

• The Euclidean distance tends to be large all the time in this sparse
space

• The Gaussian kernel affinity is not appropriate for high-dimensional
data, such as images

Qilin Li Diffusion process 7 / 48

Related works (cont.)

▶ Sparse representation affinity [1]

• Manifold assumption: high-dimensional data
lie in low-dimensional manifolds (subspaces)

• Sparse constraint encourages the usage of
data points from the same subspace for
reconstruction

min
C

∥X− XC∥2F + λ∥C∥1 s.t. diag(C) = 0, (3)

▶ The affinity matrix A = |C|+ |C|⊤

Qilin Li Diffusion process 8 / 48

Diffusion process

▶ Key idea: use neighbor information to augment pairwise affinity

• Intuitively, if xi is similar to xk and xj is also similar to xk , then the
affinity value between xi and xj should be increased

Qilin Li Diffusion process 9 / 48

Diffusion process (cont.)

▶ Graph representation G = (V ,E) of affinity matrix

• Vertices are data points, and edge weights are affinity values

Qilin Li Diffusion process 10 / 48

Diffusion process (cont.)

▶ Diffusion process as a Markov Random Walk on the graph

• Affinity values Aij can be interpreted as the transition probability of
walking from Nodei to Nodej

• e.g., starting from x1, it has a 0.5 chance walking to x2 and 0.3
chance to x4, in one step

Qilin Li Diffusion process 11 / 48

Diffusion process (cont.)

▶ Random Walk with many steps

• A is the transition probability of Random Walk in one step

• A2 is the transition probability of Random Walk in two steps

• · · ·

Qilin Li Diffusion process 12 / 48

Diffusion process (cont.)

▶ The power of affinity matrix At updates pairwise affinity using
the contextual information, which is their affinity to neighbor
nodes.

• Pull together similar nodes

• Push away dissimilar nodes

• e.g., in a graph cut problem:

Qilin Li Diffusion process 13 / 48

Diffusion process (cont.)

▶ Larger t means more neighbors are considered

▶ What t to use?

▶ The Random Walk is a stationary stochastic process

At → Π as t → ∞ (4)

where Π is a stochastic matrix with all its rows equal to π (a left
eigenvector of A)

▶ Find a proper t ∈ (0,∞) is hard

Qilin Li Diffusion process 14 / 48

Diffusion process (cont.)

▶ Instead, we could use all t together!

A0 + A1 + A2 + A3 + · · ·+ At =
t∑

i=0

At . (5)

▶ That is, the pairwise affinity is updated as the summation of all
transition probabilities of walking from one node to another, in any
number of steps

Qilin Li Diffusion process 15 / 48

Diffusion process (cont.)

▶ If the eigenvalues of A are bounded in (-1, 1) (which can be easily
achieved), then it can be shown that

t∑
i=0

At = (I− A)−1, (6)

where I is the identity matrix.

Qilin Li Diffusion process 16 / 48

Diffusion process (cont.)

▶ This can be generalized to the high-order tensor

t∑
i=0

At = (I− A)−1, (7)

where A is the Kronecker product A = A
⊗

A.

▶ Diffusion on higher-order tensor makes use of more contextual
information

Qilin Li Diffusion process 17 / 48

Diffusion process (cont.)

▶ (I− A)−1 is a diffusion kernel of size nn × nn. We can obtain a
n × n affinity matrix A∗ by

A∗ = vec−1((I− A)−1vec(I)) (8)

where vec : Rm×n → Rmn is an isomorphic operator that stacks the
columns of a matrix into a column vector. Its inverse is denoted as
vec−1.

▶ The computation cost is prohibitive due to the tensor inverse

Qilin Li Diffusion process 18 / 48

Iterative algorithm

▶ It can be shown that the following iterative algorithm converges to
the same closed-form solution (8) [2]. Initialize A(1) = A and then

A(t+1) = AA(t)A⊤ + I. (9)

▶ limt→∞ A(t+1) = vec−1((I− A)−1vec(I))

Qilin Li Diffusion process 19 / 48

Optimization framework

▶ Surprisingly, the diffusion process can also be formulated as an
optimization problem [3]

where di =
∑n

j=1 Aij is the degree of vertex xi .

▶ The optimal solution of diffusion process is a tradeoff between
smoothness and fitness

Qilin Li Diffusion process 20 / 48

Diffusion based sparse subspace clustering (DSSC) [4]

▶ Unsupervised affinity learning

▶ Sparse coding + diffusion process

▶ Code: https://github.com/qilinli/Diffusion_based_
Sparse_Subspace_Clustering-DSSC

Qilin Li Diffusion process 21 / 48

https://github.com/qilinli/Diffusion_based_Sparse_Subspace_Clustering-DSSC
https://github.com/qilinli/Diffusion_based_Sparse_Subspace_Clustering-DSSC

Self-reinforced diffusion process (SRD) [5]

▶ Semi-supervised affinity learning

▶ Diffusion process with label information guidance

▶ The diffusion process contains two terms. The first term is about
message passing among neighbors. What about the second term?

A(t+1) = SA(t)S⊤ + I (10)

▶ Google’s PageRank system in a nutshell:

A(t+1) = αSA(t) + (1− α)Y (11)

▶ Y is a personalized jumping matrix between webpages based on user
preference

▶ The identity matrix I acts as a prior affinity matrix

Qilin Li Diffusion process 22 / 48

SRD

▶ The prior can be updated if additional information is given, e.g.,
labels of data points

A(t+1) = SA(t)S⊤ + Y (12)

where

Yij =

{
1 if xi and xj have the same label

0 otherwise

▶ Self-affinity helps the diffusion process to absorb contextual
information more effectively

▶ Code:
https://github.com/qilinli/Self_Supervised_Diffusion

1 2 3 4 5 6 7 8 9 10

of labels per class

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y

LANDUSE-21

LGC+selfAffinity=0
GFHF+selfAffinity=0
GGMC+selfAffinity=0
LGC+selfAffinity=1
GFHF+selfAffinity=1
GGMC+selfAffinity=1
LGC+selfAffinity=d
GFHF+selfAffinity=d
GGMC+selfAffinity=d

1 2 3 4 5 6 7 8 9 10

of labels per class

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

ORL

LGC+selfAffinity=0
GFHF+selfAffinity=0
GGMC+selfAffinity=0
LGC+selfAffinity=1
GFHF+selfAffinity=1
GGMC+selfAffinity=1
LGC+selfAffinity=d
GFHF+selfAffinity=d
GGMC+selfAffinity=d

1 2 3 4 5 6 7 8 9 10

of labels per class

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

A
cc

ur
ac

y

MPEG

LGC+KNN
GFHF+KNN
GGMC+KNN
LGC+RDP
GFHF+RDP
GGMC+RDP
LGC+SRD
GFHF+SRD
GGMC+SRD

1 2 3 4 5 6 7 8 9 10

of labels per class

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
cc

ur
ac

y

Texture-25

LGC+KNN
GFHF+KNN
GGMC+KNN
LGC+RDP
GFHF+RDP
GGMC+RDP
LGC+SRD
GFHF+SRD
GGMC+SRD

Qilin Li Diffusion process 23 / 48

https://github.com/qilinli/Self_Supervised_Diffusion

Alternating diffusion process (ADP) [6]

▶ Self-supervised affinity learning

▶ Diffusion process with guidance of self-predicted labels

▶ Rethink the SRD algorithm

▶ If the given label can aid the diffusion process, the predicted label
may also help

Qilin Li Diffusion process 24 / 48

Alternating diffusion process (ADP) [6] (cont.)

▶ The predicted label as feedback to “self-supervise” the diffusion
process

▶ The affinity graph and predicted label are updated alternately in an
iterative manner

Qilin Li Diffusion process 25 / 48

Alternating diffusion process (ADP) [6] (cont.)

▶ The workflow of ADP

▶ Code: https:
//github.com/qilinli/Alternating_Diffusion_Process

Qilin Li Diffusion process 26 / 48

https://github.com/qilinli/Alternating_Diffusion_Process
https://github.com/qilinli/Alternating_Diffusion_Process

ADP experiments

▶ Ablation study on synthetic data

Figure 1: Semi-supervised classification results on “Five Circles” dataset with
one label per class.

Qilin Li Diffusion process 27 / 48

Today

▶ Paper [7]:
Q. Li, S. An, L. Li, W. Liu, and Y. Shao, “Multi-view diffusion
process for spectral clustering and image retrieval,” IEEE
Transactions on Image Processing, 2023.

▶ Code:
https://github.com/qilinli/Multi-View-Diffusion-MVD

Qilin Li Diffusion process 28 / 48

https://github.com/qilinli/Multi-View-Diffusion-MVD

Multi-view learning

▶ Data can often be characterised by multiple representations

▶ E.g., An image can be encoded by SIFT, CNN, ResNet,
Transformer...

▶ E.g., a webpage can be represented by its text, images, hyperlinks,
keywords...

▶ Multi-view learning, cross-modal learning

▶ The goal is to fuse consensus or complementary information among
views

Qilin Li Diffusion process 29 / 48

Multi-view learning (cont.)

▶ Multi-view learning is versatile, and can take place at any stage

▶ E.g., in classification (representation, metric, prediction):

▶ Today we will focus on multi-view matric learning

Qilin Li Diffusion process 30 / 48

Multi-view learning (cont.)

▶ In the context of affinity learning, the problem is: ”given a set of
affinity matrices {W1,W2, ...,Wn} ∈ Rn×n, the goal is to learn a
unified affinity matrix A ∈ Rn×n that leverages all views”

▶ A naive idea is to compute an average of all V views: 1
V

∑V
v=1 W

(v)

▶ What is the problem?

Qilin Li Diffusion process 31 / 48

Problem formulation

▶ A better idea is to compute a weighted sum: Z =
∑V

v=1 βvW(v)

▶ There are still problems:

▶ 1) How to define weights β?

▶ 2) Z is a linear combination of W and thus limited by inputs?

Qilin Li Diffusion process 32 / 48

Problem formulation (cont.)

▶ We propose to use the consensus Z as a plausible prior and enforce
the target affinity matrix A to be close to Z, resulting in the
following optimization problem:

min
A,β

∥A− Z (β)∥2F +
1

2
λ∥β∥22, (13)

s.t. β⊤1 = 1, β ≥ 0

where λ > 0 is a regularizer favouring balanced weights among
views.The constraints on β ensure all the weights are in the range of
zero to one and sum up to one.

Qilin Li Diffusion process 33 / 48

Problem formulation (cont.)

▶ The next question is how to quantify the “goodness” of input
affinity matrices W so that appropriate weights can be assigned?

▶ This is where we involve the smoothness term in the diffusion
process, i.e., for each affinity matrix W(v), we compute a scalar
measurement qv as:

1

2

n∑
i,j,k,l=1

W
(v)
ij W

(v)
kl

 Aki√
D

(v)
ii D

(v)
kk

− Alj√
D

(v)
jj D

(v)
ll

2

(14)

▶ The intuition is that sim(a, c) should be enlarged if both sim(a, b)
and sim(b, c) are large, where sim(·, ·) is the similarity between two
data points. A widely used information retrieval technique, named
automatic query expansion uses similar idea.

Qilin Li Diffusion process 34 / 48

Problem formulation (cont.)

▶ Put everything together, we obtain the final optimisation problem:

min
A,β

β⊤q (A) + µ∥A− Z (β)∥2F +
1

2
λ∥β∥22 (15)

s.t. β⊤1 = 1, β ≥ 0.

where µ > 0 is a balance hyperparameter.

▶ 1) smoothness, 2) fitness, 3) regularizer

▶ Solve by an alternating optimization routine of two subproblems

Qilin Li Diffusion process 35 / 48

Optimization solver

min
A,β

β⊤q (A) + µ∥A− Z (β)∥2F +
1

2
λ∥β∥22 (16)

s.t. β⊤1 = 1, β ≥ 0.

▶ Subproblem 1): fix β, update A

▶ Subproblem 2): fix A, update β

Qilin Li Diffusion process 36 / 48

Optimization solver (cont.)

▶ Subproblem 1): fix β, update A

▶ Closed-form solution:

A∗ = vec−1

(1−∑
v

αv

)(
I−

∑
v

αvS(v)
)−1

vec(Z)

 , (17)

where αv = 1
1+µβv and I is the identity matrix of the appropriate

size, S = S⊗ S is the Kronecker product of the normalized affinity
matrix S = D− 1

2WD− 1
2 , and vec : Rm×n → Rmn is the operation

that stacks the column of a matrix into a vector. The inverse of vec
exists and is denoted as vec−1.

▶ Iterative solver:

A(t+1) =
V∑

v=1

αvS
(v)A(t)S

(v)⊤ +

(
1−

V∑
v=1

αv

)
Z. (18)

Qilin Li Diffusion process 37 / 48

Optimization solver (cont.)

min
A,β

β⊤q (A) + µ∥A− Z (β)∥2F +
1

2
λ∥β∥22 (19)

s.t. β⊤1 = 1, β ≥ 0.

▶ Subproblem 2): fix A, update β

▶ The problem can be re-written as:

min
β

1

2
β⊤Qβ + f⊤β (20)

s.t. β⊤1 = 1, β ≥ 0,

which can be directly solved using the standard quadratic
programming routine.

Qilin Li Diffusion process 38 / 48

Experiments and Results

▶ Experiment 1): Sanity check on Cifar10

• 5 views: pixel, LeNet (75.2%), VGG (91.5%), ResNet (94.6%),
SENet (94.7%)

• 3 weighting strategies: Naive, RED [3], MVD

Qilin Li Diffusion process 39 / 48

Experiments and Results (cont.)

Table 1: Clustering performance (%) on Cifar10 with single view representation
and multi view representation.

Metric
Single view Multi view

Pixel LeNet VGG ResNet SENet Naive RED MVD

ACC 15.00 31.85 81.85 92.71 93.61 93.55 94.64 95.32
NMI 3.50 31.63 77.96 84.65 86.08 85.97 87.41 89.35

▶ Multi-view is not guaranteed to be better

▶ Weights learned by MVD make more sense and achieve best results

Qilin Li Diffusion process 40 / 48

Experiments and Results (cont.)

▶ Experiment 2): Image retrieval on Oxford5K and Paris6K

Qilin Li Diffusion process 41 / 48

Experiments and Results (cont.)

Qilin Li Diffusion process 42 / 48

Experiments and Results (cont.)

▶ Experiment 3): Clustering on 13 benchmark datasets

▶ Comparison to 6 state-of-the-art multi-view clustering approaches

Table 2: Statistics of multi-view datasets for clustering.

Dataset Type # Instances # Classes # Views View 1 View 2 View 3 View 4 View 5 View 6 View 7

ORL Face 400 40 3 Intensity (4096) LBP (3304) Gabor (6750)
Yale Face 165 15 3 Intensity (4096) LBP (3304) Gabor (6750)
Reuters Text 1200 6 5 English (2000) French (2000) German (2000) Italian (2000) Spanish (2000)
BBC-Sport Text 544 5 2 Seg1 (3183) Seg2 (3203)
CiteSeer Text 3312 6 2 Citations (3312) Content (3703)
Reuters-21578 Text 1500 6 5 English (2000) French (2000) German (2000) Italian (2000) Spanish (2000)
Flower17 Flower 1360 17 7 Color Texture Shape HOG HSV SIFT bdy SIFT int
UCI-digits Digits 2000 10 6 PIX (240) FOU (76) FAC (216) ZER (47) KAR (64) MOR (6)
NUS-WIDE Object 2000 31 5 CH (65) CM (226) CORR (145) EDH (74) WT (129)
MSRC-v1 Object 210 7 5 CM (24) HOG (576) GIST (512) LBP (256) CENT (254)
ALOI Object 10800 100 4 CS (77) HAR (13) HSB (64) RGB (125)
Caltech20 Object 2386 20 6 Gabor (48) WM (40) CENT (254) HOG (1984) GIST (512) LBP (928)
Caltech101 Object 9144 102 6 Gabor (48) WM (40) CENT (254) HOG (1984) GIST (512) LBP (928)

Qilin Li Diffusion process 43 / 48

Experiments and Results (cont.)

Qilin Li Diffusion process 44 / 48

Summary of diffusion process

▶ A generic tool to learn pairwise affinity in various settings,
unsupervised, semi-supervised, or supervised, using neighborhood
information

▶ A message passing or neighbor aggregation framework on graphs
that can propagate various information, such as edge weight, vertex
label, vertex representation

▶ A simple yet effective iterative formula backed up by mathematical
justification

▶ Future works could focus on improving computational efficiency,
integration with representation learning

Qilin Li Diffusion process 45 / 48

The END

Thank you!

Qilin Li Diffusion process 46 / 48

Bibliography

[1] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.

[2] X. Yang, L. Prasad, and L. J. Latecki, “Affinity learning with diffusion
on tensor product graph,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 1, pp. 28–38, 2012.

[3] S. Bai, X. Bai, Q. Tian, and L. J. Latecki, “Regularized diffusion
process on bidirectional context for object retrieval,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41,
no. 5, pp. 1213–1226, 2018.

[4] Q. Li, W. Liu, and L. Li, “Affinity learning via a diffusion process for
subspace clustering,” Pattern Recognition, vol. 84, pp. 39–50, 2018.

Qilin Li Diffusion process 47 / 48

Bibliography (cont.)

[5] Q. Li, W. Liu, and L. Li, “Self-reinforced diffusion for graph-based
semi-supervised learning,” Pattern Recognition Letters, vol. 125,
pp. 439–445, 2019.

[6] Q. Li, S. An, W. Liu, and L. Li, “Semisupervised learning on graphs
with an alternating diffusion process,” IEEE Transactions on Neural
Networks and Learning Systems, 2020.

[7] Q. Li, S. An, L. Li, W. Liu, and Y. Shao, “Multi-view diffusion
process for spectral clustering and image retrieval,” IEEE
Transactions on Image Processing, 2023.

Qilin Li Diffusion process 48 / 48

	Introduction
	Related works
	Diffusion process
	Applications
	DSSC
	SRD
	ADP
	MVD (today)

