Multi-View Diffusion Process for Spectral Clustering and Image Retrieval

presented by

Qilin Li Curtin University

qilin.li@curtin.edu.au

Introduction

Related works

Diffusion process

Applications

DSSC

SRD

ADP

MVD (today)

2

What is affinity (similarity) learning?

Low affinity score

в

High affinity score

イロト イヨト イヨト イヨト

2

Introduction (cont.)

Why affinity learning?

.....

æ

・ロト ・四ト ・ヨト ・ヨト

The Gaussian kernel affinity

$$A_{ij} = \exp\left(\frac{-\|x_i - x_j\|^2}{\sigma^2}\right) \tag{1}$$

イロン イ団 とく ヨン イヨン

- The bandwidth σ controls how fast the affinity vary based on the Euclidean distance
- A global σ cannot fit non-uniform data well

э

Locally adapted Gaussian kernel affinity

$$A_{ij} = \exp\left(\frac{-\|x_i - x_j\|^2}{\sigma_i \sigma_j}\right)$$
(2)

イロン イ団 とく ヨン イヨン

• σ_i adapted to the local structure, *e.g.*, the mean distance to *k*NN of x_i

æ

Related works (cont.)

▶ All Gaussian kernels suffer from the "curse of dimensionality"

• As the dimension increases, the available data become sparse

- The Euclidean distance tends to be large all the time in this sparse space
- The Gaussian kernel affinity is not appropriate for high-dimensional data, such as images

< □ > < □ > < □ > < □ > < □ >

Related works (cont.)

Sparse representation affinity [1]

- Manifold assumption: high-dimensional data lie in low-dimensional manifolds (subspaces)
- Sparse constraint encourages the usage of data points from the same subspace for reconstruction

イロト イヨト イヨト イヨト

$$\min_{C} \|\mathbf{X} - \mathbf{X}\mathbf{C}\|_{F}^{2} + \lambda \|\mathbf{C}\|_{1} \quad \text{s.t.} \quad \text{diag}(\mathbf{C}) = 0, \tag{3}$$

• The affinity matrix
$$\mathbf{A} = |\mathbf{C}| + |\mathbf{C}|^{\top}$$

8 / 48

• Key idea: use **neighbor information** to augment pairwise affinity

• Intuitively, if x_i is similar to x_k and x_j is also similar to x_k, then the affinity value between x_i and x_j should be increased

• Graph representation G = (V, E) of affinity matrix

· Vertices are data points, and edge weights are affinity values

イロン イ団 とく ヨン イヨン

Diffusion process as a Markov Random Walk on the graph

- Affinity values A_{ij} can be interpreted as the transition probability of walking from Node_i to Node_j
- e.g., starting from x_1 , it has a 0.5 chance walking to x_2 and 0.3 chance to x_4 , **in one step**

< □ > < □ > < □ > < □ > < □ >

Random Walk with many steps

- A is the transition probability of Random Walk in one step
- A² is the transition probability of Random Walk in two steps

イロト イ団ト イヨト イヨト

The probability of walking from x_1 to x_4 :

- In one step: $A_{14} = 0.3$
- In two steps: $A_{14}^2 = A_{12} \cdot A_{24} = 0.4$

•

- The power of affinity matrix A^t updates pairwise affinity using the contextual information, which is their affinity to neighbor nodes.
 - Pull together similar nodes
 - Push away dissimilar nodes
 - e.g., in a graph cut problem:

< □ > < □ > < □ > < □ > < □ >

Larger t means more neighbors are considered

What t to use?

The Random Walk is a stationary stochastic process

$$\mathbf{A}^t \to \Pi \quad \text{as} \quad t \to \infty$$
 (4)

イロト イヨト イヨト イヨト

where Π is a stochastic matrix with all its rows equal to π (a left eigenvector of **A**)

Find a proper $t \in (0,\infty)$ is hard

Instead, we could use all t together!

$$\mathbf{A}^{0} + \mathbf{A}^{1} + \mathbf{A}^{2} + \mathbf{A}^{3} + \dots + \mathbf{A}^{t} = \sum_{i=0}^{t} \mathbf{A}^{t}.$$
 (5)

That is, the pairwise affinity is updated as the summation of all transition probabilities of walking from one node to another, in any number of steps

▶ If the eigenvalues of **A** are bounded in (-1, 1) (which can be easily achieved), then it can be shown that

$$\sum_{i=0}^{t} \mathbf{A}^{t} = (\mathbf{I} - \mathbf{A})^{-1}, \tag{6}$$

イロト イヨト イヨト イヨト

where I is the identity matrix.

This can be generalized to the high-order tensor

$$\sum_{i=0}^{t} \mathbb{A}^{t} = (\mathbb{I} - \mathbb{A})^{-1}, \tag{7}$$

イロト イヨト イヨト イヨト

where \mathbb{A} is the Kronecker product $\mathbb{A} = \mathbf{A} \bigotimes \mathbf{A}$.

 Diffusion on higher-order tensor makes use of more contextual information • $(\mathbb{I} - \mathbb{A})^{-1}$ is a diffusion kernel of size $nn \times nn$. We can obtain a $n \times n$ affinity matrix \mathbf{A}^* by

$$\mathbf{A}^* = \operatorname{vec}^{-1}((\mathbb{I} - \mathbb{A})^{-1}\operatorname{vec}(\mathbb{I}))$$
(8)

where $vec : \mathbb{R}^{m \times n} \to \mathbb{R}^{mn}$ is an isomorphic operator that stacks the columns of a matrix into a column vector. Its inverse is denoted as vec^{-1} .

The computation cost is prohibitive due to the tensor inverse

It can be shown that the following iterative algorithm converges to the same closed-form solution (8) [2]. Initialize A⁽¹⁾ = A and then

$$\mathbf{A}^{(t+1)} = \mathbf{A}\mathbf{A}^{(t)}\mathbf{A}^{\top} + \mathbf{I}.$$
 (9)

$$\blacktriangleright \lim_{t\to\infty} \mathbf{A}^{(t+1)} = vec^{-1}((\mathbb{I} - \mathbb{A})^{-1}vec(\mathbb{I}))$$

Surprisingly, the diffusion process can also be formulated as an optimization problem [3]

$$\min_{\hat{A}} \frac{1}{2} \sum_{i,k,j,m=1}^{n} A_{ik} A_{jm} \left(\frac{\hat{A}_{ij}}{\sqrt{d_i d_j}} - \frac{\hat{A}_{km}}{\sqrt{d_k d_m}} \right)^2 + \mu \sum_{i,j=1}^{n} \frac{\left(\hat{A}_{ij} - I_{ij} \right)^2}{\text{smoothness}}$$

where $d_i = \sum_{j=1}^n A_{ij}$ is the degree of vertex x_i .

The optimal solution of diffusion process is a tradeoff between smoothness and fitness

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Diffusion based sparse subspace clustering (DSSC) [4]

- Unsupervised affinity learning
- Sparse coding + diffusion process

Code: https://github.com/qilinli/Diffusion_based_ Sparse_Subspace_Clustering-DSSC

< □ > < □ > < □ > < □ > < □ >

Self-reinforced diffusion process (SRD) [5]

- Semi-supervised affinity learning
- Diffusion process with label information guidance
- The diffusion process contains two terms. The first term is about message passing among neighbors. What about the second term?

$$\mathbf{A}^{(t+1)} = \mathbf{S}\mathbf{A}^{(t)}\mathbf{S}^{\top} + \mathbf{I}$$
(10)

Google's PageRank system in a nutshell:

$$\mathbf{A}^{(t+1)} = \alpha \mathbf{S} \mathbf{A}^{(t)} + (1-\alpha) \mathbf{Y}$$
(11)

- Y is a personalized jumping matrix between webpages based on user preference
- The identity matrix I acts as a prior affinity matrix

The prior can be updated if additional information is given, e.g., labels of data points

$$\mathbf{A}^{(t+1)} = \mathbf{S}\mathbf{A}^{(t)}\mathbf{S}^{\top} + \mathbf{Y}$$
(12)

where

$$Y_{ij} = egin{cases} 1 & ext{if } x_i ext{ and } x_j ext{ have the same label} \ 0 & ext{otherwise} \end{cases}$$

 Self-affinity helps the diffusion process to absorb contextual information more effectively

Code:

https://github.com/qilinli/Self_Supervised_Diffusion

Alternating diffusion process (ADP) [0]

- Self-supervised affinity learning
- Diffusion process with guidance of self-predicted labels
- Rethink the SRD algorithm

If the given label can aid the diffusion process, the predicted label may also help

イロン イ団 とく ヨン イヨン

Alternating diffusion process (ADP) [6] (cont.)

The predicted label as feedback to "self-supervise" the diffusion process

The affinity graph and predicted label are updated alternately in an iterative manner

-		
();	in the	

イロン イ団 とく ヨン イヨン

Alternating diffusion process (ADP) [6] (cont.)

The workflow of ADP

Code: https:

//github.com/qilinli/Alternating_Diffusion_Process

э

ADP experiments

Figure 1: Semi-supervised classification results on "Five Circles" dataset with one label per class.

27 / 48

< □ > < □ > < □ > < □ > < □ >

Paper [7]: Q. Li, S. An, L. Li, W. Liu, and Y. Shao, "Multi-view diffusion process for spectral clustering and image retrieval," IEEE Transactions on Image Processing, 2023.

► Code:

https://github.com/qilinli/Multi-View-Diffusion-MVD

Multi-view learning

- Data can often be characterised by multiple representations
- E.g., An image can be encoded by SIFT, CNN, ResNet, Transformer...
- E.g., a webpage can be represented by its text, images, hyperlinks, keywords...
- Multi-view learning, cross-modal learning
- The goal is to fuse consensus or complementary information among views

Multi-view learning is versatile, and can take place at any stage

• E.g., in classification (representation, metric, prediction):

Today we will focus on multi-view matric learning

Multi-view learning (cont.)

In the context of affinity learning, the problem is: "given a set of affinity matrices {W₁, W₂, ..., W_n} ∈ R^{n×n}, the goal is to learn a unified affinity matrix A ∈ R^{n×n} that leverages all views"

- A naive idea is to compute an average of all V views: $\frac{1}{V} \sum_{v=1}^{V} \mathbf{W}^{(v)}$
- What is the problem?

< □ > < □ > < □ > < □ > < □ >

- A better idea is to compute a weighted sum: $\mathbf{Z} = \sum_{\nu=1}^{V} \beta_{\nu} \mathbf{W}^{(\nu)}$
- ► There are still problems:
- ▶ 1) How to define weights β ?
- 2) Z is a linear combination of W and thus limited by inputs?

We propose to use the consensus Z as a plausible prior and enforce the target affinity matrix A to be close to Z, resulting in the following optimization problem:

$$\min_{\mathbf{A},\boldsymbol{\beta}} \|\mathbf{A} - \mathbf{Z}(\boldsymbol{\beta})\|_{\mathsf{F}}^{2} + \frac{1}{2}\lambda \|\boldsymbol{\beta}\|_{2}^{2}, \qquad (13)$$

s.t. $\boldsymbol{\beta}^{\top}\mathbf{1} = 1, \quad \boldsymbol{\beta} \ge 0$

イロト イヨト イヨト イヨト

where $\lambda>0$ is a regularizer favouring balanced weights among views.The constraints on ${\cal B}$ ensure all the weights are in the range of zero to one and sum up to one.

Problem formulation (cont.)

- The next question is how to quantify the "goodness" of input affinity matrices W so that appropriate weights can be assigned?
- This is where we involve the smoothness term in the diffusion process, i.e., for each affinity matrix W^(v), we compute a scalar measurement q_v as:

$$\frac{1}{2} \sum_{i,j,k,l=1}^{n} \mathbf{W}_{ij}^{(v)} \mathbf{W}_{kl}^{(v)} \left(\frac{\mathbf{A}_{ki}}{\sqrt{\mathbf{D}_{ii}^{(v)} \mathbf{D}_{kk}^{(v)}}} - \frac{\mathbf{A}_{lj}}{\sqrt{\mathbf{D}_{jj}^{(v)} \mathbf{D}_{ll}^{(v)}}} \right)^2$$
(14)

The intuition is that sim(a, c) should be enlarged if both sim(a, b) and sim(b, c) are large, where sim(·, ·) is the similarity between two data points. A widely used information retrieval technique, named automatic query expansion uses similar idea.

イロン イ団 とく ヨン イヨン

Put everything together, we obtain the final optimisation problem:

$$\min_{\mathbf{A},\boldsymbol{\beta}} \quad \boldsymbol{\beta}^{\top} \mathbf{q} \left(\mathbf{A} \right) + \mu \| \mathbf{A} - \mathbf{Z} \left(\boldsymbol{\beta} \right) \|_{\mathsf{F}}^{2} + \frac{1}{2} \lambda \| \boldsymbol{\beta} \|_{2}^{2} \qquad (15)$$

s.t.
$$\boldsymbol{\beta}^{\top} \mathbf{1} = 1, \quad \boldsymbol{\beta} \ge 0.$$

where $\mu > 0$ is a balance hyperparameter.

- 1) smoothness, 2) fitness, 3) regularizer
- Solve by an alternating optimization routine of two subproblems

$$\min_{\mathbf{A},\boldsymbol{\beta}} \quad \boldsymbol{\beta}^{\top} \mathbf{q} \left(\mathbf{A} \right) + \mu \| \mathbf{A} - \mathbf{Z} \left(\boldsymbol{\beta} \right) \|_{\mathsf{F}}^{2} + \frac{1}{2} \lambda \| \boldsymbol{\beta} \|_{2}^{2}$$
(16)
s.t.
$$\boldsymbol{\beta}^{\top} \mathbf{1} = 1, \quad \boldsymbol{\beta} \ge 0.$$

2

Optimization solver (cont.)

Subproblem 1): fix β, update A

Closed-form solution:

$$\mathbf{A}^{*} = \operatorname{vec}^{-1}\left(\left(1 - \sum_{\nu} \alpha_{\nu}\right) \left(\mathbb{I} - \sum_{\nu} \alpha_{\nu} \mathbb{S}^{(\nu)}\right)^{-1} \operatorname{vec}(\mathbf{Z})\right), \quad (17)$$

where $\alpha_{\mathbf{v}} = \frac{1}{1+\mu} \beta_{\mathbf{v}}$ and \mathbb{I} is the identity matrix of the appropriate size, $\mathbb{S} = \mathbf{S} \otimes \mathbf{S}$ is the Kronecker product of the normalized affinity matrix $\mathbf{S} = \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}$, and $vec : \mathbb{R}^{m \times n} \to \mathbb{R}^{mn}$ is the operation that stacks the column of a matrix into a vector. The inverse of vec exists and is denoted as vec^{-1} .

Iterative solver:

$$\mathbf{A}_{(t+1)} = \sum_{\nu=1}^{V} \alpha_{\nu} \mathbf{S}^{(\nu)} \mathbf{A}_{(t)} \mathbf{S}^{(\nu)^{\top}} + \left(1 - \sum_{\nu=1}^{V} \alpha_{\nu}\right) \mathbf{Z}.$$
 (18)

Optimization solver (cont.)

$$\min_{\mathbf{A},\boldsymbol{\beta}} \quad \boldsymbol{\beta}^{\top} \mathbf{q} \left(\mathbf{A} \right) + \mu \| \mathbf{A} - \mathbf{Z} \left(\boldsymbol{\beta} \right) \|_{\mathsf{F}}^{2} + \frac{1}{2} \lambda \| \boldsymbol{\beta} \|_{2}^{2}$$

$$s.t. \quad \boldsymbol{\beta}^{\top} \mathbf{1} = 1, \quad \boldsymbol{\beta} \ge 0.$$

$$(19)$$

▶ The problem can be re-written as:

$$\min_{\boldsymbol{\beta}} \quad \frac{1}{2} \boldsymbol{\beta}^{\top} \mathbf{Q} \boldsymbol{\beta} + \mathbf{f}^{\top} \boldsymbol{\beta}$$

$$s.t. \quad \boldsymbol{\beta}^{\top} \mathbf{1} = 1, \quad \boldsymbol{\beta} \ge 0,$$

$$(20)$$

イロト イヨト イヨト イヨト

which can be directly solved using the standard quadratic programming routine.

Experiments and Results

Experiment 1): Sanity check on Cifar10

- 5 views: pixel, LeNet (75.2%), VGG (91.5%), ResNet (94.6%), SENet (94.7%)
- 3 weighting strategies: Naive, RED [3], MVD

Fig. 3. Weights learned on multi-view representations of the Cifar10 dataset.

< □ > < □ > < □ > < □ > < □ >

Table 1: Clustering performance (%) on Cifar10 with single view representation and multi view representation.

Metric		:	Single vi	Multi view				
	Pixel	LeNet	VGG	ResNet	SENet	Naive	RED	MVD
ACC NMI	15.00 3.50	31.85 31.63	81.85 77.96	92.71 84.65	93.61 86.08	93.55 85.97	94.64 87.41	95.32 89.35

Multi-view is not guaranteed to be better

Weights learned by MVD make more sense and achieve best results

イロン イ団 とく ヨン イヨン

Experiments and Results (cont.)

Experiment 2): Image retrieval on Oxford5K and Paris6K

TABLE II

RETRIEVAL PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON OXFORD 5K AND PARIS 6K. R-MAC FEATURES ARE EXTRACTED BASED ON [50] USING VGG AND RESNET101 AS THE BACKBONE.

Method	Feature	Oxford 5k	Paris 6k
<i>k</i> NN search	R-MAC(VGG)	79.5	84.5
<i>k</i> NN search + AQE [42]		85.4	88.4
Iscen's diffusion [19]		85.7	94.1
Yang's diffusion [31]		89.7	94.7
kNN search	R-MAC(ResNet)	83.9	93.8
kNN search + AQE [42]		89.6	95.3
Iscen's diffusion [19]		87.1	96.5
Yang's diffusion [31]		92.6	97.1
Naive	Both	88.2	96.1
RED [37]		92.8	97.3
Proposed MVD		94.4	97.7

41 / 48

Experiments and Results (cont.)

42 / 48

< □ > < □ > < □ > < □ > < □ >

Experiment 3): Clustering on 13 benchmark datasets

Comparison to 6 state-of-the-art multi-view clustering approaches

Table 2: Statistics of multi-view datasets for clustering.

Dataset	Type	# Instances	# Classes	# Views	View 1	View 2	View 3	View 4	View 5	View 6	View 7
ORL	Face	400	40	3	Intensity (4096)	LBP (3304)	Gabor (6750)				
Yale	Face	165	15	3	Intensity (4096)	LBP (3304)	Gabor (6750)				
Reuters	Text	1200	6	5	English (2000)	French (2000)	German (2000)	Italian (2000)	Spanish (2000)		
BBC-Sport	Text	544	5	2	Seg1 (3183)	Seg2 (3203)					
CiteSeer	Text	3312	6	2	Citations (3312)	Content (3703)					
Reuters-21578	Text	1500	6	5	English (2000)	French (2000)	German (2000)	Italian (2000)	Spanish (2000)		
Flower17	Flower	1360	17	7	Color	Texture	Shape	HOG	HSV	SIFT bdy	SIFT int
UCI-digits	Digits	2000	10	6	PIX (240)	FOU (76)	FAC (216)	ZER (47)	KAR (64)	MOR (6)	
NUS-WIDE	Object	2000	31	5	CH (65)	CM (226)	CORR (145)	EDH (74)	WT (129)		
MSRC-v1	Object	210	7	5	CM (24)	HOG (576)	GIST (512)	LBP (256)	CENT (254)		
ALOI	Object	10800	100	4	CS (77)	HAR (13)	HSB (64)	RGB (125)			
Caltech20	Object	2386	20	6	Gabor (48)	WM (40)	CENT (254)	HOG (1984)	GIST (512)	LBP (928)	
Caltech101	Object	9144	102	6	Gabor (48)	WM (40)	CENT (254)	HOG (1984)	GIST (512)	LBP (928)	

	CLUSTERING METHODS.									
Metric	Dataset	MVGL [13]	AWP [23]	MCGC [52]	ETLMSC [5]	DGF [29]	FPMVS [53]	SC (best)	MVD (ours)	
	ORL	$83.79 \pm .00$	$87.88 \pm .00$	$89.39 \pm .00$	89.03±.22	91.80±.17	85.61±.18	90.78±.50	95.37±.25	
	Yale	$68.03 \pm .00$	$69.42 \pm .00$	$68.39 \pm .00$	69.74±.82	$73.90 \pm .00$	$70.75 \pm .92$	$71.14 \pm .76$	75.56±1.2	
	Reuters	$9.61 \pm .00$	$11.66 \pm .00$	$9.38 \pm .00$	$28.64 \pm .12$	$16.04 \pm .06$	$30.51 \pm .36$	$19.73 \pm .06$	32.45 ± 21	
	BBCSport	$92.95 \pm .00$	$91.49 \pm .00$	$82.02 \pm .00$	$97.25 \pm .09$	$92.68 \pm .00$	93.25±.61	$87.11 \pm .00$	94.46±.00	
	CiteSeer	$4.78 \pm .00$	$37.14 \pm .00$	$18.06 \pm .00$	$36.53 \pm .22$	38.10±.07	42.81±.13	17.63±1.1	44.23 ± 15	
NIMI	Reuters-21578	$8.63 \pm .00$	$28.67 \pm .00$	$11.43 \pm .00$	$25.58 \pm .72$	$30.94 \pm .06$	$32.17 \pm .58$	20.26±.11	$35.53 \pm .44$	
INIVIT	Flower17	$22.51 \pm .00$	$46.58 \pm .00$	$44.38 \pm .00$	61.17±.53	64.92±.37	$49.23 \pm .36$	47.34±.45	62.50±.07	
	UCI-digits	$88.10 \pm .00$	$93.02 \pm .00$	$83.71 \pm .00$	$92.33 \pm .06$	$95.90 \pm .08$	$91.73 \pm .20$	$92.52 \pm .00$	93.30±.13	
	NUS-WIDE	$7.21 \pm .00$	$16.28 \pm .00$	$14.55 \pm .00$	$15.12 \pm .32$	$19.86 \pm .26$	$20.12 \pm .46$	17.33±.33	$21.72 \pm .53$	
	MSRC-v1	72.80±.00	$76.61 \pm .00$	$71.80 \pm .00$	79.54±.34	$80.98 \pm .00$	78.57±.52	69.07±.78	89.96±.73	
	ALOI	$69.75 \pm .00$	$73.60 \pm .00$	$82.45 \pm .00$	$88.63 \pm .64$	$91.08 \pm .33$	$87.51 \pm .60$	$80.18 \pm .45$	92.47 ± 42	
	Caltech20	$41.74 \pm .00$	$58.28 \pm .00$	$57.25 \pm .00$	67.18±.23	$65.37 \pm .08$	$65.47 \pm .68$	$52.74 \pm .20$	72.30 ± 13	
	Caltech101	$41.97 \scriptstyle \pm .00$	$14.13 \scriptstyle \pm .00$	$41.52 \pm .00$	49.72±.64	$46.76 \pm .08$	42.83±.35	$48.41 \pm .20$	54.92±.49	
	ORL	$71.25 \pm .00$	$76.50 \pm .00$	$78.25 \pm .00$	81.33±.52	$84.20 \pm .62$	82.63±.76	80.88±.99	88.60 ± 1.4	
	Yale	$70.30 \pm .00$	$67.27 \pm .00$	63.64±.00	65.91±.34	$70.91 \pm .00$	$68.25 \pm .58$	69.21±.75	76.00±1.4	
	Reuters	$21.35 \pm .00$	$25.44 \pm .00$	$23.92 \pm .00$	38.62±.37	$31.64 \pm .06$	$44.53 \pm .12$	27.27±.26	$49.70 \pm .00$	
	BBCSport	97.98±.00	$97.43 \pm .00$	$91.18 \pm .00$	95.94±.06	$97.98 \pm .00$	$96.17 \pm .05$	95.96±.00	$98.35 \pm .00$	
	CiteSeer	$25.91 \pm .00$	$64.07 \pm .00$	$43.72 \pm .00$	54.21±.22	63.50±.21	58.63±.07	40.64 ± 1.1	$69.14 \pm .00$	
ACC	Reuters-21578	$30.33 \pm .00$	$49.40 \pm .00$	$32.80 \pm .00$	43.68±.37	$50.77 \pm .07$	$49.23 \pm .48$	42.36±.27	51.56±.53	
ACC	Flower17	$25.00 \pm .00$	$44.85 \pm .00$	$43.90 \pm .00$	$60.28 \pm .44$	67.03±.97	$51.85 \pm .14$	43.56±.75	64.40±.07	
	UCI-digits	$86.05 \pm .00$	$96.75 \pm .00$	$82.40 \pm .00$	92.64±.16	$98.25 \pm .08$	92.70±.25	$96.59 \pm .20$	$96.75 \pm .13$	
	NUS-WIDE	$14.85 \pm .00$	$14.20 \pm .00$	$15.35 \pm .00$	15.57±.86	16.80 ± 12	$16.34 \pm .66$	$13.86 \pm .47$	$18.65 \pm .72$	
	MSRC-v1	75.24±.00	$87.14 \pm .00$	$74.29 \pm .00$	83.76±.35	$87.14 \pm .00$	85.42±.76	67.29±.84	94.70±.57	
	ALOI	$56.62 \pm .00$	$61.43 \pm .00$	77.04±.00	81.42±.75	84.51 ± 1.0	$81.47 \pm .54$	68.65±1.3	$87.38 \pm .52$	
	Caltech20	$49.37 \pm .00$	$55.87 \pm .00$	$58.89 \pm .00$	58.42±.36	$59.67 \pm .08$	63.26±.82	$38.52 \pm .20$	61.24±.49	
	Caltech101	$13.44 \pm .00$	$26.22 \pm .00$	$23.00 \pm .00$	29.77±.41	$23.53 \pm .39$	$31.49 \pm .59$	26.74±.54	$34.26 \scriptstyle \pm .44$	

TABLE IV Average clustering performance (NMI, ACC) and standard deviation (%) over 10 runs by different multi-view spectral clustering methods.

æ

- A generic tool to learn pairwise affinity in various settings, unsupervised, semi-supervised, or supervised, using neighborhood information
- A message passing or neighbor aggregation framework on graphs that can propagate various information, such as edge weight, vertex label, vertex representation
- A simple yet effective iterative formula backed up by mathematical justification
- Future works could focus on improving computational efficiency, integration with representation learning

イロン イ団 とく ヨン イヨン

Thank you!

46 / 48

2

- E. Elhamifar and R. Vidal, "Sparse subspace clustering: Algorithm, theory, and applications," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 35, no. 11, pp. 2765–2781, 2013.
- [2] X. Yang, L. Prasad, and L. J. Latecki, "Affinity learning with diffusion on tensor product graph," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 35, no. 1, pp. 28–38, 2012.
- [3] S. Bai, X. Bai, Q. Tian, and L. J. Latecki, "Regularized diffusion process on bidirectional context for object retrieval," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 41, no. 5, pp. 1213–1226, 2018.
- [4] Q. Li, W. Liu, and L. Li, "Affinity learning via a diffusion process for subspace clustering," *Pattern Recognition*, vol. 84, pp. 39–50, 2018.

ヘロト ヘロト ヘヨト ヘヨト

- [5] Q. Li, W. Liu, and L. Li, "Self-reinforced diffusion for graph-based semi-supervised learning," *Pattern Recognition Letters*, vol. 125, pp. 439–445, 2019.
- [6] Q. Li, S. An, W. Liu, and L. Li, "Semisupervised learning on graphs with an alternating diffusion process," *IEEE Transactions on Neural Networks and Learning Systems*, 2020.
- [7] Q. Li, S. An, L. Li, W. Liu, and Y. Shao, "Multi-view diffusion process for spectral clustering and image retrieval," *IEEE Transactions on Image Processing*, 2023.