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Introduction

▶ What is affinity (similarity) learning?
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Introduction (cont.)

▶ Why affinity learning?
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Related works

▶ The Gaussian kernel affinity

Aij = exp

(
−∥xi − xj∥2

σ2

)
(1)

• The bandwidth σ controls how fast the affinity vary based on the
Euclidean distance

• A global σ cannot fit non-uniform data well
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Related works (cont.)

▶ Locally adapted Gaussian kernel affinity

Aij = exp

(
−∥xi − xj∥2

σiσj

)
(2)

• σi adapted to the local structure, e.g., the mean distance to kNN of
xi
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Related works (cont.)

▶ All Gaussian kernels suffer from the “curse of dimensionality”

• As the dimension increases, the available data become sparse

• The Euclidean distance tends to be large all the time in this sparse
space

• The Gaussian kernel affinity is not appropriate for high-dimensional
data, such as images
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Related works (cont.)

▶ Sparse representation affinity [1]

• Manifold assumption: high-dimensional data
lie in low-dimensional manifolds (subspaces)

• Sparse constraint encourages the usage of
data points from the same subspace for
reconstruction

min
C

∥X− XC∥2F + λ∥C∥1 s.t. diag(C) = 0, (3)

▶ The affinity matrix A = |C|+ |C|⊤
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Diffusion process

▶ Key idea: use neighbor information to augment pairwise affinity

• Intuitively, if xi is similar to xk and xj is also similar to xk , then the
affinity value between xi and xj should be increased
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Diffusion process (cont.)

▶ Graph representation G = (V ,E ) of affinity matrix

• Vertices are data points, and edge weights are affinity values
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Diffusion process (cont.)

▶ Diffusion process as a Markov Random Walk on the graph

• Affinity values Aij can be interpreted as the transition probability of
walking from Nodei to Nodej

• e.g., starting from x1, it has a 0.5 chance walking to x2 and 0.3
chance to x4, in one step
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Diffusion process (cont.)

▶ Random Walk with many steps

• A is the transition probability of Random Walk in one step

• A2 is the transition probability of Random Walk in two steps

• · · ·
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Diffusion process (cont.)

▶ The power of affinity matrix At updates pairwise affinity using
the contextual information, which is their affinity to neighbor
nodes.

• Pull together similar nodes

• Push away dissimilar nodes

• e.g., in a graph cut problem:
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Diffusion process (cont.)

▶ Larger t means more neighbors are considered

▶ What t to use?

▶ The Random Walk is a stationary stochastic process

At → Π as t → ∞ (4)

where Π is a stochastic matrix with all its rows equal to π (a left
eigenvector of A)

▶ Find a proper t ∈ (0,∞) is hard
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Diffusion process (cont.)

▶ Instead, we could use all t together!

A0 + A1 + A2 + A3 + · · ·+ At =
t∑

i=0

At . (5)

▶ That is, the pairwise affinity is updated as the summation of all
transition probabilities of walking from one node to another, in any
number of steps
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Diffusion process (cont.)

▶ If the eigenvalues of A are bounded in (-1, 1) (which can be easily
achieved), then it can be shown that

t∑
i=0

At = (I− A)−1, (6)

where I is the identity matrix.
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Diffusion process (cont.)

▶ This can be generalized to the high-order tensor

t∑
i=0

At = (I− A)−1, (7)

where A is the Kronecker product A = A
⊗

A.

▶ Diffusion on higher-order tensor makes use of more contextual
information
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Diffusion process (cont.)

▶ (I− A)−1 is a diffusion kernel of size nn × nn. We can obtain a
n × n affinity matrix A∗ by

A∗ = vec−1((I− A)−1vec(I)) (8)

where vec : Rm×n → Rmn is an isomorphic operator that stacks the
columns of a matrix into a column vector. Its inverse is denoted as
vec−1.

▶ The computation cost is prohibitive due to the tensor inverse
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Iterative algorithm

▶ It can be shown that the following iterative algorithm converges to
the same closed-form solution (8) [2]. Initialize A(1) = A and then

A(t+1) = AA(t)A⊤ + I. (9)

▶ limt→∞ A(t+1) = vec−1((I− A)−1vec(I))
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Optimization framework

▶ Surprisingly, the diffusion process can also be formulated as an
optimization problem [3]

where di =
∑n

j=1 Aij is the degree of vertex xi .

▶ The optimal solution of diffusion process is a tradeoff between
smoothness and fitness
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Diffusion based sparse subspace clustering (DSSC) [4]

▶ Unsupervised affinity learning

▶ Sparse coding + diffusion process

▶ Code: https://github.com/qilinli/Diffusion_based_
Sparse_Subspace_Clustering-DSSC
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Self-reinforced diffusion process (SRD) [5]

▶ Semi-supervised affinity learning

▶ Diffusion process with label information guidance

▶ The diffusion process contains two terms. The first term is about
message passing among neighbors. What about the second term?

A(t+1) = SA(t)S⊤ + I (10)

▶ Google’s PageRank system in a nutshell:

A(t+1) = αSA(t) + (1− α)Y (11)

▶ Y is a personalized jumping matrix between webpages based on user
preference

▶ The identity matrix I acts as a prior affinity matrix
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SRD

▶ The prior can be updated if additional information is given, e.g.,
labels of data points

A(t+1) = SA(t)S⊤ + Y (12)

where

Yij =

{
1 if xi and xj have the same label

0 otherwise

▶ Self-affinity helps the diffusion process to absorb contextual
information more effectively

▶ Code:
https://github.com/qilinli/Self_Supervised_Diffusion
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Alternating diffusion process (ADP) [6]

▶ Self-supervised affinity learning

▶ Diffusion process with guidance of self-predicted labels

▶ Rethink the SRD algorithm

▶ If the given label can aid the diffusion process, the predicted label
may also help
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Alternating diffusion process (ADP) [6] (cont.)

▶ The predicted label as feedback to “self-supervise” the diffusion
process

▶ The affinity graph and predicted label are updated alternately in an
iterative manner
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Alternating diffusion process (ADP) [6] (cont.)

▶ The workflow of ADP

▶ Code: https:
//github.com/qilinli/Alternating_Diffusion_Process
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ADP experiments

▶ Ablation study on synthetic data

Figure 1: Semi-supervised classification results on “Five Circles” dataset with
one label per class.
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Today

▶ Paper [7]:
Q. Li, S. An, L. Li, W. Liu, and Y. Shao, “Multi-view diffusion
process for spectral clustering and image retrieval,” IEEE
Transactions on Image Processing, 2023.

▶ Code:
https://github.com/qilinli/Multi-View-Diffusion-MVD
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Multi-view learning

▶ Data can often be characterised by multiple representations

▶ E.g., An image can be encoded by SIFT, CNN, ResNet,
Transformer...

▶ E.g., a webpage can be represented by its text, images, hyperlinks,
keywords...

▶ Multi-view learning, cross-modal learning

▶ The goal is to fuse consensus or complementary information among
views
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Multi-view learning (cont.)

▶ Multi-view learning is versatile, and can take place at any stage

▶ E.g., in classification (representation, metric, prediction):

▶ Today we will focus on multi-view matric learning
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Multi-view learning (cont.)

▶ In the context of affinity learning, the problem is: ”given a set of
affinity matrices {W1,W2, ...,Wn} ∈ Rn×n, the goal is to learn a
unified affinity matrix A ∈ Rn×n that leverages all views”

▶ A naive idea is to compute an average of all V views: 1
V

∑V
v=1 W

(v)

▶ What is the problem?
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Problem formulation

▶ A better idea is to compute a weighted sum: Z =
∑V

v=1 βvW(v)

▶ There are still problems:

▶ 1) How to define weights β?

▶ 2) Z is a linear combination of W and thus limited by inputs?
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Problem formulation (cont.)

▶ We propose to use the consensus Z as a plausible prior and enforce
the target affinity matrix A to be close to Z, resulting in the
following optimization problem:

min
A,β

∥A− Z (β)∥2F +
1

2
λ∥β∥22, (13)

s.t. β⊤1 = 1, β ≥ 0

where λ > 0 is a regularizer favouring balanced weights among
views.The constraints on β ensure all the weights are in the range of
zero to one and sum up to one.

Qilin Li Diffusion process 33 / 48



Problem formulation (cont.)

▶ The next question is how to quantify the “goodness” of input
affinity matrices W so that appropriate weights can be assigned?

▶ This is where we involve the smoothness term in the diffusion
process, i.e., for each affinity matrix W(v), we compute a scalar
measurement qv as:

1

2

n∑
i,j,k,l=1

W
(v)
ij W

(v)
kl

 Aki√
D

(v)
ii D

(v)
kk

− Alj√
D

(v)
jj D

(v)
ll

2

(14)

▶ The intuition is that sim(a, c) should be enlarged if both sim(a, b)
and sim(b, c) are large, where sim(·, ·) is the similarity between two
data points. A widely used information retrieval technique, named
automatic query expansion uses similar idea.
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Problem formulation (cont.)

▶ Put everything together, we obtain the final optimisation problem:

min
A,β

β⊤q (A) + µ∥A− Z (β)∥2F +
1

2
λ∥β∥22 (15)

s.t. β⊤1 = 1, β ≥ 0.

where µ > 0 is a balance hyperparameter.

▶ 1) smoothness, 2) fitness, 3) regularizer

▶ Solve by an alternating optimization routine of two subproblems
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Optimization solver

min
A,β

β⊤q (A) + µ∥A− Z (β)∥2F +
1

2
λ∥β∥22 (16)

s.t. β⊤1 = 1, β ≥ 0.

▶ Subproblem 1): fix β, update A

▶ Subproblem 2): fix A, update β
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Optimization solver (cont.)

▶ Subproblem 1): fix β, update A

▶ Closed-form solution:

A∗ = vec−1

(1−∑
v

αv

)(
I−

∑
v

αvS(v)
)−1

vec(Z)

 , (17)

where αv = 1
1+µβv and I is the identity matrix of the appropriate

size, S = S⊗ S is the Kronecker product of the normalized affinity
matrix S = D− 1

2WD− 1
2 , and vec : Rm×n → Rmn is the operation

that stacks the column of a matrix into a vector. The inverse of vec
exists and is denoted as vec−1.

▶ Iterative solver:

A(t+1) =
V∑

v=1

αvS
(v)A(t)S

(v)⊤ +

(
1−

V∑
v=1

αv

)
Z. (18)
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Optimization solver (cont.)

min
A,β

β⊤q (A) + µ∥A− Z (β)∥2F +
1

2
λ∥β∥22 (19)

s.t. β⊤1 = 1, β ≥ 0.

▶ Subproblem 2): fix A, update β

▶ The problem can be re-written as:

min
β

1

2
β⊤Qβ + f⊤β (20)

s.t. β⊤1 = 1, β ≥ 0,

which can be directly solved using the standard quadratic
programming routine.

Qilin Li Diffusion process 38 / 48



Experiments and Results

▶ Experiment 1): Sanity check on Cifar10

• 5 views: pixel, LeNet (75.2%), VGG (91.5%), ResNet (94.6%),
SENet (94.7%)

• 3 weighting strategies: Naive, RED [3], MVD
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Experiments and Results (cont.)

Table 1: Clustering performance (%) on Cifar10 with single view representation
and multi view representation.

Metric
Single view Multi view

Pixel LeNet VGG ResNet SENet Naive RED MVD

ACC 15.00 31.85 81.85 92.71 93.61 93.55 94.64 95.32
NMI 3.50 31.63 77.96 84.65 86.08 85.97 87.41 89.35

▶ Multi-view is not guaranteed to be better

▶ Weights learned by MVD make more sense and achieve best results
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Experiments and Results (cont.)

▶ Experiment 2): Image retrieval on Oxford5K and Paris6K
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Experiments and Results (cont.)
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Experiments and Results (cont.)

▶ Experiment 3): Clustering on 13 benchmark datasets

▶ Comparison to 6 state-of-the-art multi-view clustering approaches

Table 2: Statistics of multi-view datasets for clustering.

Dataset Type # Instances # Classes # Views View 1 View 2 View 3 View 4 View 5 View 6 View 7

ORL Face 400 40 3 Intensity (4096) LBP (3304) Gabor (6750)
Yale Face 165 15 3 Intensity (4096) LBP (3304) Gabor (6750)
Reuters Text 1200 6 5 English (2000) French (2000) German (2000) Italian (2000) Spanish (2000)
BBC-Sport Text 544 5 2 Seg1 (3183) Seg2 (3203)
CiteSeer Text 3312 6 2 Citations (3312) Content (3703)
Reuters-21578 Text 1500 6 5 English (2000) French (2000) German (2000) Italian (2000) Spanish (2000)
Flower17 Flower 1360 17 7 Color Texture Shape HOG HSV SIFT bdy SIFT int
UCI-digits Digits 2000 10 6 PIX (240) FOU (76) FAC (216) ZER (47) KAR (64) MOR (6)
NUS-WIDE Object 2000 31 5 CH (65) CM (226) CORR (145) EDH (74) WT (129)
MSRC-v1 Object 210 7 5 CM (24) HOG (576) GIST (512) LBP (256) CENT (254)
ALOI Object 10800 100 4 CS (77) HAR (13) HSB (64) RGB (125)
Caltech20 Object 2386 20 6 Gabor (48) WM (40) CENT (254) HOG (1984) GIST (512) LBP (928)
Caltech101 Object 9144 102 6 Gabor (48) WM (40) CENT (254) HOG (1984) GIST (512) LBP (928)
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Experiments and Results (cont.)
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Summary of diffusion process

▶ A generic tool to learn pairwise affinity in various settings,
unsupervised, semi-supervised, or supervised, using neighborhood
information

▶ A message passing or neighbor aggregation framework on graphs
that can propagate various information, such as edge weight, vertex
label, vertex representation

▶ A simple yet effective iterative formula backed up by mathematical
justification

▶ Future works could focus on improving computational efficiency,
integration with representation learning
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The END

Thank you!
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